On the Orientational Properties of Some One-Dimensional Model Systems
نویسنده
چکیده
We use the transfer matrix formalism to examine the behavior of some anisotropic hard-core fluids, the centers of whose particles are constrained to a line. At large elongation and pressure, the compressibility factor 13p/p is higher than that for a system with complete aligment by a factor 1 + v that depends upon the molecular geometry. For molecules with a finite radius of curvature, e.g., ellipses, v = d/2, while for objects with flat sides v = d; here d is the number of orientational degrees of freedom. A connection is made to some recent studies of hard ellipsoid fluids. We also model the effect of an external field on physical adsorption and show the existence of a phase transition in certain limiting situations.
منابع مشابه
Topological Relationship Between One-Dimensional Box Model and Randić Indices in Linear Simple Conjugated Polyenes
The alternative double bonds and conjugation in the polyene compounds are one of the main properties in these compounds. Each carbon-carbon bonds in a polyene compound along the chain has appreciable double-bond character. The p-electrons are therefore not localized but are relatively free to move throughout the entire carbon skeleton as an one-dimensional box. The skeleton be considered as a r...
متن کاملآرام کردن مایع فرمی: جدال با علامتهای فرمیونی غیر مستقیم
The fermion sign problem is studied in the path integral formalism. The standard picture of Fermi liquids is first critically analyzed, pointing out some of its rather peculiar properties. The insightful work of Ceperley in constructing fermionic path integrals in terms of constrained world-lines is then reviewed. In this representation, the minus signs associated with Fermi-Dirac statistics a...
متن کاملThe spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملSome properties of band matrix and its application to the numerical solution one-dimensional Bratu's problem
A Class of new methods based on a septic non-polynomial spline function for the numerical solution one-dimensional Bratu's problem are presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Associated boundary f...
متن کاملCalculation of Quasi-one-dimensional Interacting Electron Gas Using the Hartree-Fock Method
In this paper, the Hartree-Fock method has been formulated to investigate some of the ground state properties of quasi-one-dimensional interacting electron gas in the presence of the magnetic field. The bare coulomb interaction between electrons has been assumed. For this system, we have also computed some of its thermodynamic and magnetic properties such as the energy, pressure, incompressibil...
متن کامل